Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Front Immunol ; 14: 1129190, 2023.
Article in English | MEDLINE | ID: covidwho-2258100

ABSTRACT

Although coronavirus disease 2019 (COVID-19) is primarily associated with mild respiratory symptoms, a subset of patients may develop more complicated disease with systemic complications and multiple organ injury. The gastrointestinal tract may be directly infected by SARS-CoV-2 or secondarily affected by viremia and the release of inflammatory mediators that cause viral entry from the respiratory epithelium. Impaired intestinal barrier function in SARS-CoV-2 infection is a key factor leading to excessive microbial and endotoxin translocation, which triggers a strong systemic immune response and leads to the development of viral sepsis syndrome with severe sequelae. Multiple components of the gut immune system are affected, resulting in a diminished or dysfunctional gut immunological barrier. Antiviral peptides, inflammatory mediators, immune cell chemotaxis, and secretory immunoglobulins are important parameters that are negatively affected in SARS-CoV-2 infection. Mucosal CD4+ and CD8+ T cells, Th17 cells, neutrophils, dendritic cells, and macrophages are activated, and the number of regulatory T cells decreases, promoting an overactivated immune response with increased expression of type I and III interferons and other proinflammatory cytokines. The changes in the immunologic barrier could be promoted in part by a dysbiotic gut microbiota, through commensal-derived signals and metabolites. On the other hand, the proinflammatory intestinal environment could further compromise the integrity of the intestinal epithelium by promoting enterocyte apoptosis and disruption of tight junctions. This review summarizes the changes in the gut immunological barrier during SARS-CoV-2 infection and their prognostic potential.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Prognosis , Cytokines , Inflammation Mediators
2.
Pathogens ; 12(2)2023 Feb 09.
Article in English | MEDLINE | ID: covidwho-2227710

ABSTRACT

Acinetobacter baumannii (AB) has evolved over the last decades as a major problem in carbapenem-resistant gram-negative nosocomial infections, associated with high mortality rates especially in the intensive care unit (ICU). Recent reports highlight the increasing prevalence of resistance to colistin, a last resort therapeutic option for carbapenem-resistant AB. We retrospectively evaluated the characteristics, treatment regimens and outcomes of twenty patients with pan-drug resistant (PDR) AB primary bacteremia hospitalized in the ICU of the University General Hospital of Patras, during a two-year period (October 2020-September 2022). The 28-day mortality reached 50%. Between survivors and non-survivors, no differences were found regarding age, gender, and Charlson comorbidity index (CCI). However, non-survivors had higher APACHE II scores and higher prevalence of septic shock and COVID-19 infection. A significantly higher percentage in the survivor group received Fosfomycin as part of the combination regimen. Inclusion of fosfomycin in the combination therapeutic regimen was associated with significantly better survival as compared to non-fosfomycin-containing regimens. In view of the increasing prevalence of PDR-AB infections in ICUs, its associated high rates of mortality and the lack of effective treatment options, the observed survival benefit with fosfomycin inclusion in the therapeutic regimen merits further validation in larger prospective studies.

3.
Microorganisms ; 10(5)2022 May 19.
Article in English | MEDLINE | ID: covidwho-1934170

ABSTRACT

A considerable proportion of patients with severe COVID-19 meet Sepsis-3 criteria and share common pathophysiological mechanisms of multiorgan injury with bacterial sepsis, in absence of secondary bacterial infections, a process characterized as "viral sepsis". The intestinal barrier exerts a central role in the pathophysiological sequence of events that lead from SARS-CoV-2 infection to severe systemic complications. Accumulating evidence suggests that SARS-CoV-2 disrupts the integrity of the biological, mechanical and immunological gut barrier. Specifically, microbiota diversity and beneficial bacteria population are reduced, concurrently with overgrowth of pathogenic bacteria (dysbiosis). Enterocytes' tight junctions (TJs) are disrupted, and the apoptotic death of intestinal epithelial cells is increased leading to increased gut permeability. In addition, mucosal CD4(+) and CD8(+) T cells, Th17 cells, neutrophils, dendritic cells and macrophages are activated, and T-regulatory cells are decreased, thus promoting an overactivated immune response, which further injures the intestinal epithelium. This dysfunctional gut barrier in SARS-CoV-2 infection permits the escape of luminal bacteria, fungi and endotoxin to normally sterile extraintestinal sites and the systemic circulation. Pre-existing gut barrier dysfunction and endotoxemia in patients with comorbidities including cardiovascular disease, obesity, diabetes and immunosuppression predisposes to aggravated endotoxemia. Bacterial and endotoxin translocation promote the systemic inflammation and immune activation, which characterize the SARS-CoV-2 induced "viral sepsis" syndrome associated with multisystemic complications of severe COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL